【滤波跟踪】基于matlab卡尔曼滤波kalman飞行器目标跟踪(轨迹真实值 轨迹预测 卡尔曼输出 误差)【含Matlab源码 4312期】-程序员宅基地

技术标签: matlab  Matlab路径规划(进阶版)  

博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
个人主页:海神之光
代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

一、卡尔曼滤波kalman飞行器目标跟踪(轨迹真实值 轨迹预测 卡尔曼输出 误差)简介

卡尔曼滤波是一种用于处理具有噪声的动态系统的数学方法。它最初是为了跟踪飞机、导弹和航天器的位置和速度而开发的。卡尔曼滤波在轨迹跟踪、控制系统和机器人导航等领域得到了广泛应用。本文将介绍基于卡尔曼滤波的轨迹跟踪的原理、实现步骤和应用。

1 卡尔曼滤波简介
卡尔曼滤波是一种用于估计线性动态系统状态的数学方法。它基于贝叶斯定理,通过对系统状态的预测和测量结果的更新来估计系统状态。卡尔曼滤波的核心思想是利用先验信息和后验信息来优化系统状态的估计。先验信息是指系统状态的先前估计,后验信息是指基于新的测量结果更新后的估计。
卡尔曼滤波将系统的状态表示为一个向量,包含系统的位置、速度和加速度等信息。这个向量被称为状态向量。卡尔曼滤波的主要步骤包括预测和更新:
预测:根据系统的动态模型和先前的状态估计,预测系统的下一个状态。预测的过程包括两个步骤:状态预测和协方差预测。状态预测是利用系统的动态模型和先前的状态估计来预测系统的下一个状态。协方差预测是利用状态预测和系统的噪声模型来预测系统状态的不确定性。
更新:利用新的测量结果来更新预测的状态估计。更新的过程包括两个步骤:计算卡尔曼增益和更新状态估计。卡尔曼增益是利用协方差预测和测量噪声模型来计算的,它表示测量结果对状态估计的权重。更新状态估计是利用卡尔曼增益和测量结果来更新先前的状态估计。
卡尔曼滤波的优点是能够处理具有噪声的测量结果,并且能够利用系统的动态模型进行状态估计。它的缺点是需要对系统的动态模型和测量噪声模型进行准确的建模,并且对于非线性系统和非高斯噪声模型,需要使用扩展卡尔曼滤波或无迹卡尔曼滤波等方法进行处理。

2 基于卡尔曼滤波的轨迹跟踪
基于卡尔曼滤波的轨迹跟踪是一种利用卡尔曼滤波进行目标位置估计的方法。它将目标的运动模型表示为一组线性方程,利用卡尔曼滤波对目标位置进行估计和预测。基于卡尔曼滤波的轨迹跟踪的应用非常广泛,包括自动驾驶、无人机导航、机器人视觉导航等领域。
在轨迹跟踪中,需要估计目标的位置、速度和加速度等状态量。然而,由于目标的运动不确定性和测量噪声的存在,目标的真实状态很难被准确地测量。因此,需要利用卡尔曼滤波来对目标状态进行估计和预测。

轨迹跟踪的算法流程
基于卡尔曼滤波的轨迹跟踪主要包括以下步骤:
(1)初始化:确定目标的初始位置和速度,并建立状态向量和协方差矩阵。
(2)预测:利用目标的运动模型和先前的状态估计,预测目标的下一个状态。
(3)测量:利用传感器测量目标的位置。
(4)更新:利用卡尔曼滤波的公式,将测量结果与预测结果结合,得到更新后的状态估计和协方差矩阵。
(5)重复步骤(2)至(4)以实现连续的轨迹跟踪。
具体而言,轨迹跟踪的算法流程如下:

(1)初始化
在轨迹跟踪开始时,需要确定目标的初始位置和速度,并建立状态向量和协方差矩阵。状态向量通常包含目标的位置、速度和加速度等信息,而协方差矩阵用于表示状态估计的不确定性。
(2)预测:
利用目标的运动模型和先前的状态估计,预测目标的下一个状态。目标的运动模型可以通过目标的历史运动数据来确定,通常假设目标的运动是匀加速运动或匀速运动。假设目标在时刻 t 的状态向量为 x(t),则可以利用以下公式进行预测:
x ( t + 1 ) = F ⋅ x ( t ) + B ⋅ u ( t ) + w ( t ) x(t+1)=F\cdot x(t)+B\cdot u(t)+w(t) x(t+1)=Fx(t)+Bu(t)+w(t)
其中,F是状态转移矩阵,B是控制矩阵,u(t)是控制向量,w(t)是过程噪声,用于表示运动模型的不确定性。
协方差矩阵的预测可以通过以下公式计算:
P ( t + 1 ) = F ⋅ P ( t ) ⋅ F T + Q P(t+1)=F\cdot P(t)\cdot F^T+Q P(t+1)=FP(t)FT+Q
其中,P(t)是先前状态估计的协方差矩阵,Q是过程噪声的协方差矩阵,用于表示状态估计的不确定性。
(3)测量:
利用传感器测量目标的位置,得到测量向量z(t)。测量向量通常包含目标的位置信息,但也可能包含其他信息,如目标的大小和形状等。
(4)更新:
利用卡尔曼滤波的公式,将测量结果与预测结果结合,得到更新后的状态估计和协方差矩阵。

二、部分源代码

clear all;
close all;

%-------------------------------------参数设置--------------------------------------
dt = 2; %雷达扫描周期为2s
num = 4; %运动阶段可分为4个
time(1:4) = [400,200,10,50]; %4个阶段的持续时间
len = time./dt; %4个阶段的观测数据个数
location_tru = zeros(2,sum(len)+1); %真实位置初始化
location_tru(:,1) = [2000,10000]‘;
location_obs = zeros(2,sum(len)+1); %观测位置初始化
location_kal = zeros(2,sum(len)+1); %kalman滤波输出位置初始化
location_kal(:,1) = [2000,10000]’;
speed = zeros(2,sum(len)+1); %速度初始化
speed(:,1) = [0,-15]';
u = zeros(2,num); %4个阶段的加速度,u(1,:)表示x方向的加速度
u(1,2) = 0.075;
u(2,2) = 0.075;
u(2,4) = 0.3;
nosi_power = 10000; %观测噪声的方差
n_p = 10*log10(nosi_power);
nosi = wgn(2,sum(len)+1,n_p); %观测噪声标准差为100,对应为40dB
%------------------------------------状态方程------------------------------------
for ii=1:num %第ii个运动阶段
for jj=1:2 %x轴方向或者y轴方向上
if ii1
len_left(ii) = 2;
len_right(ii) = len(ii)+1;
else
len_left(ii) = len_right(ii-1);
len_right(ii) = len_left(ii)+len(ii);
end
for k=len_left(ii):len_right(ii)
if ii
num && k==len_right(ii) %第4阶段转弯结束加速度降为0
u(jj,ii) = 0;
end
speed(jj,k) = speed(jj,k-1)+u(jj,ii)dt; %速度更新
location_tru(jj,k) = location_tru(jj,k-1)+ 0.5
(speed(jj,k-1)+speed(jj,k))*dt; %位置更新
end
end
end

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]宁倩慧,张艳兵,刘莉,陆真,郭冰陶.扩展卡尔曼滤波的目标跟踪优化算法[J].探测与控制学报. 2016,38(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/TIQCmatlab/article/details/137933342

智能推荐

前端开发之vue-grid-layout的使用和实例-程序员宅基地

文章浏览阅读1.1w次,点赞7次,收藏34次。vue-grid-layout的使用、实例、遇到的问题和解决方案_vue-grid-layout

Power Apps-上传附件控件_powerapps点击按钮上传附件-程序员宅基地

文章浏览阅读218次。然后连接一个数据源,就会在下面自动产生一个添加附件的组件。把这个控件复制粘贴到页面里,就可以单独使用来上传了。插入一个“编辑”窗体。_powerapps点击按钮上传附件

C++ 面向对象(Object-Oriented)的特征 & 构造函数& 析构函数_"object(cnofd[\"ofdrender\"])十条"-程序员宅基地

文章浏览阅读264次。(1) Abstraction (抽象)(2) Polymorphism (多态)(3) Inheritance (继承)(4) Encapsulation (封装)_"object(cnofd[\"ofdrender\"])十条"

修改node_modules源码,并保存,使用patch-package打补丁,git提交代码后,所有人可以用到修改后的_修改 node_modules-程序员宅基地

文章浏览阅读133次。删除node_modules,重新npm install看是否成功。在 package.json 文件中的 scripts 中加入。修改你的第三方库的bug等。然后目录会多出一个目录文件。_修改 node_modules

【】kali--password:su的 Authentication failure问题,&sudo passwd root输入密码时Sorry, try again._password: su: authentication failure-程序员宅基地

文章浏览阅读883次。【代码】【】kali--password:su的 Authentication failure问题,&sudo passwd root输入密码时Sorry, try again._password: su: authentication failure

整理5个优秀的微信小程序开源项目_微信小程序开源模板-程序员宅基地

文章浏览阅读1w次,点赞13次,收藏97次。整理5个优秀的微信小程序开源项目。收集了微信小程序开发过程中会使用到的资料、问题以及第三方组件库。_微信小程序开源模板

随便推点

Centos7最简搭建NFS服务器_centos7 搭建nfs server-程序员宅基地

文章浏览阅读128次。Centos7最简搭建NFS服务器_centos7 搭建nfs server

Springboot整合Mybatis-Plus使用总结(mybatis 坑补充)_mybaitis-plus ruledataobjectattributemapper' and '-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏3次。前言mybatis在持久层框架中还是比较火的,一般项目都是基于ssm。虽然mybatis可以直接在xml中通过SQL语句操作数据库,很是灵活。但正其操作都要通过SQL语句进行,就必须写大量的xml文件,很是麻烦。mybatis-plus就很好的解决了这个问题。..._mybaitis-plus ruledataobjectattributemapper' and 'com.picc.rule.management.d

EECE 1080C / Programming for ECESummer 2022 Laboratory 4: Global Functions Practice_eece1080c-程序员宅基地

文章浏览阅读325次。EECE 1080C / Programming for ECESummer 2022Laboratory 4: Global Functions PracticePlagiarism will not be tolerated:Topics covered:function creation and call statements (emphasis on global functions)Objective:To practice program development b_eece1080c

洛谷p4777 【模板】扩展中国剩余定理-程序员宅基地

文章浏览阅读53次。被同机房早就1年前就学过的东西我现在才学,wtcl。设要求的数为\(x\)。设当前处理到第\(k\)个同余式,设\(M = LCM ^ {k - 1} _ {i - 1}\) ,前\(k - 1\)个的通解就是\(x + i * M\)。那么其实第\(k\)个来说,其实就是求一个\(y\)使得\(x + y * M ≡ a_k(mod b_k)\)转化一下就是\(y * M ...

android 退出应用没有走ondestory方法,[Android基础论]为何Activity退出之后,系统没有调用onDestroy方法?...-程序员宅基地

文章浏览阅读1.3k次。首先,问题是如何出现的?晚上复查代码,发现一个activity没有调用自己的ondestroy方法我表示非常的费解,于是我检查了下代码。发现再finish代码之后接了如下代码finish();System.exit(0);//这就是罪魁祸首为什么这样写会出现问题System.exit(0);////看一下函数的原型public static void exit (int code)//Added ..._android 手动杀死app,activity不执行ondestroy

SylixOS快问快答_select函数 导致堆栈溢出 sylixos-程序员宅基地

文章浏览阅读894次。Q: SylixOS 版权是什么形式, 是否分为<开发版税>和<运行时版税>.A: SylixOS 是开源并免费的操作系统, 支持 BSD/GPL 协议(GPL 版本暂未确定). 没有任何的运行时版税. 您可以用她来做任何 您喜欢做的项目. 也可以修改 SylixOS 的源代码, 不需要支付任何费用. 当然笔者希望您可以将使用 SylixOS 开发的项目 (不需要开源)或对 SylixOS 源码的修改及时告知笔者.需要指出: SylixOS 本身仅是笔者用来提升自己水平而开发的_select函数 导致堆栈溢出 sylixos

推荐文章

热门文章

相关标签