Transformer入门-轨迹预测实例解析_transformer轨迹预测-程序员宅基地

技术标签: 深度学习  transformer  人工智能  

最近动手玩了一下Transformer,找到了一个很适合练手的小例子,基于https://github.com/cxl-ustb/AISTransforemr的代码做了一些修改(感谢原作者),改进后的代码地址:GitHub - BITcsy/AISTransformer: 利用transformer进行船舶轨迹预测。


1. 任务简介:

该代码功能是处理船只的轨迹、状态预测(经度,维度,速度,朝向)。每条数据涵盖11个点,输入是完整的11个点(Encoder输入前10个点,Decoder输入后10个点,模型整体输出后10个点),如下图,训练数据140条,测试数据160条。整个任务本身并没有什么意义(已知轨迹再输出部分轨迹),并没有做什么预测任务。不过整体例子简单明了,调试难度小,比较适合做入门练手的例子。

 2. 模型结构:

原作者实现了比较完整的Transformer结构,当然对于轨迹预测类任务很多结构是冗余的,因为Decoder那部分输入在语音识别上可能有用,但是在轨迹预测上应该没有必要,不过可以学习一下。

(1)Transformer参考资料

这网上很多,这里引用几个个人觉得比较好的:

Transformer: NLP里的变形金刚 --- 详述 - 知乎

多图详解attention和mask。从循环神经网络、transformer到GPT2,我悟了 - 知乎

(2)本文模型结构及主要变量的对应图

费劲把这个代码里的整体数据流和主要的模型结构整理了下,可以看出来和最典型的Transformer的结构是一样的。其中标颜色的几个模块单独再打开来看吧,左下角的几个变量和word embedding及positional encoding相关,也单独来看。

(3)word embedding & positional encoding

word embedding参考资料:词嵌入向量(Word Embedding)的原理和生成方法 - 程序员大本营

nn.embedding: PyTorch中的nn.Embedding - 知乎

positional encoding: positional encoding位置编码详解:绝对位置与相对位置编码对比_夕小瑶的博客-程序员宅基地

Positional Encoding的原理和计算 - 知乎   有比较形象的图形解释。

总之,word embedding想要对序列化的输入(比如一句话,或者这里的一条轨迹)进行降维表达,把input映射成embedding。疑点1:nn.embedding这个模块貌似比较适合NLP任务这种比较稀疏的embedding表达,做轨迹类任务不一定合适。那代码中的n_src_vocab, n_trg_vocab应该就是对应于字典的长度,d_word_src, d_model应该就是隐层要用多少维去表达这些词。疑点2:按道理d_word_src应该小于n_src_vocab才对,但是代码里分别设置了512和500

positional encoding的作用是为了解决attention这种并行计算的结构丢失了RNN、LSTM这种具有先后顺序的网络特性,因为NLP或者轨迹预测类任务还是需要看特征的时序上的改变的,因此用positional encoding来区分不同的位置,结合其公式应该比较容易理解。代码中position设置为200,按道理这个数设置为大于最大序列长度的数就可以了(本代码最大序列长度就是10)。

word embedding和positional encoding这块的整体计算原理大概如下图,在这个代码里,d_word和d_model其实是一个意思,但是如果是其他场景,d_model的含义应该更广,毕竟是dimension of the model。

(4)注意力部分代码详解

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q
        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn

根据上面的代码,画了一下attention详细的计算过程,如下图:

 几个需要注意的地方

(1)attention的mask是可选的,在时序任务里是需要的,因为时序是有因果性的。

(2)Q*K才是attention,它的维度是Batch*heads*lens*lens,也就意味着是有明确物理意义的,只和最初的序列长度有关系,可以可视化出来做分析用。

(3)ScaledDotProduct算完后,最后一维是由dv决定的,想回到q的维度,还需要做linear的操作。

(4)contiguous & view:代码里的操作实际就是把dv数据按照heads concate到了一起,具体为何需要使用contiguous的原因PyTorch中的contiguous - 知乎,其实可以用reshape来代替 PyTorch:view() 与 reshape() 区别详解_reshape和view_地球被支点撬走啦的博客-程序员宅基地

(5)residual:类似于Resnet的设计。

3. 增加的功能:

(1)DataLoader:原代码直接用的pickle来的raw data,为了更好的进行训练控制,我改写成了Dataloader的形式,实测同参数训练要比原来慢1/10到1/5左右。

(2)tqdm:给训练加了个进度条,方便监测比较细节的训练进度。

(3)tensorboard:方便调试(tensorboardX和tensorboard都要安装,tensorboard --logdir XXX)。

(4)模型断点训练:因为自己电脑是10年前的机器,性能很差,所以增加了一个断点续训的功能,避免每次都要从头训练。这里是用checkpoint形式写的保存细节信息。

(5)pt2onxx.py里面用netron可以查看网络结构,略改了一下,可以实现,不过感觉netron显示的太细节,比较难看出最主要的网络设计。

4. 调试笔记

(1)learning rate & 模型大小:原代码直接拿过来可以训,但是收敛不了,loss一直是好几千。分析出来2个主要问题:

i. 原learning rate做了特殊设计,但是用tessorboard看,原learning rate是随训练次数上升的,很令人困惑,所以改写逐步下降的形式。

ii. 改了learning rate还是收敛不了的,分析到训练数据只有140条,但是又搞了个这么大的模型,可能根本喂不饱网络,所以直接把attention部分的大小改小了,multiheadattention的head数8->2,attention layer数6->1,这样改完网络收敛了,至少在训练集上可以过拟合,loss到1左右。

 (2)模型保存

关于模型保存,有一类需求,就是本地需要load一个已有的模型pth文件,然后接着训练调试。有一个很奇怪的地方,当我load一个已存的pth文件后,模型做forward的时候,凭什么知道找我源码里同名model的forward函数?我尝试改了一下模型的类名(把Transformer改成了Transformers),果然test的时候就报错了,所以在load模型后,会自动找同名模型的实现:

return super().find_class(mod_name, name)
AttributeError: Can't get attribute 'Transformer' on <module 'transformer.Models' from '/home/XXX/AISTransformer/AISTransformer/transformer/Models.py'>

(3)训练集表现 & 关于model.eval的问题

在测试的过程中发现了一个很奇怪的现象,就是如果我把训好的模型save后,再重新load上来,用训练集做测试,loss差距很大(训练的loss是1.x,但是重新load的模型在同数据集下loss是1000+),做了几个尝试

(4)attention & 测试集表现

在训练集上loss约为1,在测试集上测试loss是2k-3k,泛化能力很差,当然数据太少是一个比较显著的问题。为了在小数据集上提升模型泛化能力,可以通过attention来加入一些先验信息引导模型训练。可能的尝试:

  • 分析attention:这个轨迹预测的任务,因为直接拷贝trg_seq就可以了,所以对于decoder部分的self attention应该有非常明显的对应位的attention的结果,(encoder的self att和deocder的cross att不一定有这种结果,因为可能的关系已经比较间接了)
  • attention mask:用mask的方式约束训练
  • attention loss(guide attention):用loss的方式引导训练

(5)Shuffle的问题:因为发现测试集上表现不好,考虑到原代码训练时并没有shuffle,可能会让网络学到一些关于顺序的东西(https://zhuanlan.zhihu.com/p/57108650),所以在引入Dataloader,加了下shuffle,但是训出来感觉测试集上差别不大。

(6)结构对比:做这个简单的任务用这么复杂的模型可能往往是难以达到较好的效果的,还有用了例如word embedding这样的结构,看上去比较奇怪。用MLP简单实现了下这个网络。

  • 直接实现了一个4层的MLP:各层维度4,25,50,25,4,输入只用transformer的encoder部分的10*4的输入,因为网络比较小,训练速度会提高很多,30000epochs 2min训练完,但是训练是比较难收敛的,30000epochs的train loss仍然在550+,但是test的error也是550左右。在此感谢@追梦5号的建议,预测轨迹的时序信息才是核心信息,所以各层维度调整为10,25,50,25,10,效果要比之前好
  • 如果和transformer一样,把11个坐标点分成两段输入,那train loss直接0.01(当然这个任务也没什么意义),test error 0.03。
  • 所以几个个模型结构对比下,在本例子给的任务下,如果MLP模型和transformer同样的输入,小MLP网络的收敛性和泛化性要比transformer好很多,合理。
  • 输入 epochs 训练时长 train loss test loss
    transformer

    1. traj[:,:-1,:]

    2. traj[:,1:,:]

    8000 >1h@cpu(11min@GTX1080) 1.0+ 2k+
    MLP traj[:,-1:,:] 30000 2min 550+ 550+
    MLP traj[:,:,-1:] 30000 2min 20+ 20+
    MLP

    1. traj[:,:-1,:]

    2. traj[:,1:,:]

    30000 2min 0.01 0.03

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/BIT_csy/article/details/129971757

智能推荐

18个顶级人工智能平台-程序员宅基地

文章浏览阅读1w次,点赞2次,收藏27次。来源:机器人小妹  很多时候企业拥有重复,乏味且困难的工作流程,这些流程往往会减慢生产速度并增加运营成本。为了降低生产成本,企业别无选择,只能自动化某些功能以降低生产成本。  通过数字化..._人工智能平台

electron热加载_electron-reloader-程序员宅基地

文章浏览阅读2.2k次。热加载能够在每次保存修改的代码后自动刷新 electron 应用界面,而不必每次去手动操作重新运行,这极大的提升了开发效率。安装 electron 热加载插件热加载虽然很方便,但是不是每个 electron 项目必须的,所以想要舒服的开发 electron 就只能给 electron 项目单独的安装热加载插件[electron-reloader]:// 在项目的根目录下安装 electron-reloader,国内建议使用 cnpm 代替 npmnpm install electron-relo._electron-reloader

android 11.0 去掉recovery模式UI页面的选项_android recovery 删除 部分菜单-程序员宅基地

文章浏览阅读942次。在11.0 进行定制化开发,会根据需要去掉recovery模式的一些选项 就是在device.cpp去掉一些选项就可以了。_android recovery 删除 部分菜单

mnn linux编译_mnn 编译linux-程序员宅基地

文章浏览阅读3.7k次。https://www.yuque.com/mnn/cn/cvrt_linux_mac基础依赖这些依赖是无关编译选项的基础编译依赖• cmake(3.10 以上)• protobuf (3.0 以上)• 指protobuf库以及protobuf编译器。版本号使用 protoc --version 打印出来。• 在某些Linux发行版上这两个包是分开发布的,需要手动安装• Ubuntu需要分别安装 libprotobuf-dev 以及 protobuf-compiler 两个包•..._mnn 编译linux

利用CSS3制作淡入淡出动画效果_css3入场效果淡入淡出-程序员宅基地

文章浏览阅读1.8k次。CSS3新增动画属性“@-webkit-keyframes”,从字面就可以看出其含义——关键帧,这与Flash中的含义一致。利用CSS3制作动画效果其原理与Flash一样,我们需要定义关键帧处的状态效果,由CSS3来驱动产生动画效果。下面讲解一下如何利用CSS3制作淡入淡出的动画效果。具体实例可参考刚进入本站时的淡入效果。1. 定义动画,名称为fadeIn@-webkit-keyf_css3入场效果淡入淡出

计算机软件又必须包括什么,计算机系统应包括硬件和软件两个子系统,硬件和软件又必须依次分别包括______?...-程序员宅基地

文章浏览阅读2.8k次。计算机系统应包括硬件和软件两个子系统,硬件和软件又必须依次分别包括中央处理器和系统软件。按人的要求接收和存储信息,自动进行数据处理和计算,并输出结果信息的机器系统。计算机是脑力的延伸和扩充,是近代科学的重大成就之一。计算机系统由硬件(子)系统和软件(子)系统组成。前者是借助电、磁、光、机械等原理构成的各种物理部件的有机组合,是系统赖以工作的实体。后者是各种程序和文件,用于指挥全系统按指定的要求进行..._计算机系统包括硬件系统和软件系统 软件又必须包括

随便推点

进程调度(一)——FIFO算法_进程调度fifo算法代码-程序员宅基地

文章浏览阅读7.9k次,点赞3次,收藏22次。一 定义这是最早出现的置换算法。该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。但该算法与进程实际运行的规律不相适应,因为在进程中,有些页面经常被访问,比如,含有全局变量、常用函数、例程等的页面,FIFO 算法并不能保证这些页面不被淘汰。这里,我_进程调度fifo算法代码

mysql rownum写法_mysql应用之类似oracle rownum写法-程序员宅基地

文章浏览阅读133次。rownum是oracle才有的写法,rownum在oracle中可以用于取第一条数据,或者批量写数据时限定批量写的数量等mysql取第一条数据写法SELECT * FROM t order by id LIMIT 1;oracle取第一条数据写法SELECT * FROM t where rownum =1 order by id;ok,上面是mysql和oracle取第一条数据的写法对比,不过..._mysql 替换@rownum的写法

eclipse安装教程_ecjelm-程序员宅基地

文章浏览阅读790次,点赞3次,收藏4次。官网下载下载链接:http://www.eclipse.org/downloads/点击Download下载完成后双击运行我选择第2个,看自己需要(我选择企业级应用,如果只是单纯学习java选第一个就行)进入下一步后选择jre和安装路径修改jvm/jre的时候也可以选择本地的(点后面的文件夹进去),但是我们没有11版本的,所以还是用他的吧选择接受安装中安装过程中如果有其他界面弹出就点accept就行..._ecjelm

Linux常用网络命令_ifconfig 删除vlan-程序员宅基地

文章浏览阅读245次。原文链接:https://linux.cn/article-7801-1.htmlifconfigping &lt;IP地址&gt;:发送ICMP echo消息到某个主机traceroute &lt;IP地址&gt;:用于跟踪IP包的路由路由:netstat -r: 打印路由表route add :添加静态路由路径routed:控制动态路由的BSD守护程序。运行RIP路由协议gat..._ifconfig 删除vlan

redux_redux redis-程序员宅基地

文章浏览阅读224次。reduxredux里要求把数据都放在公共的存储区域叫store里面,组件中尽量少放数据,假如绿色的组件要给很多灰色的组件传值,绿色的组件只需要改变store里面对应的数据就行了,接着灰色的组件会自动感知到store里的数据发生了改变,store只要有变化,灰色的组件就会自动从store里重新取数据,这样绿色组件的数据就很方便的传到其它灰色组件里了。redux就是把公用的数据放在公共的区域去存..._redux redis

linux 解压zip大文件(解决乱码问题)_linux 7za解压中文乱码-程序员宅基地

文章浏览阅读2.2k次,点赞3次,收藏6次。unzip版本不支持4G以上的压缩包所以要使用p7zip:Linux一个高压缩率软件wget http://sourceforge.net/projects/p7zip/files/p7zip/9.20.1/p7zip_9.20.1_src_all.tar.bz2tar jxvf p7zip_9.20.1_src_all.tar.bz2cd p7zip_9.20.1make && make install 如果安装失败,看一下报错是不是因为没有下载gcc 和 gcc ++(p7_linux 7za解压中文乱码